May 13, 2025

Jo Mai Asian Culture

Embrace Artistry Here

Natural forest regeneration is projected to reduce local temperatures

Natural forest regeneration is projected to reduce local temperatures
  • Nolan, C. J., Field, C. B. & Mach, K. J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436–446 (2021).

    Article 

    Google Scholar 

  • Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl Acad. Sci. USA 117, 24649–24651 (2020).

    Article 
    CAS 

    Google Scholar 

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lefebvre, D. et al. Assessing the carbon capture potential of a reforestation project. Sci. Rep. 11, 19907 (2021).

    Article 
    CAS 

    Google Scholar 

  • Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tuinenburg, O. A., Bosmans, J. H. & Staal, A. The global potential of forest restoration for drought mitigation. Environ. Res. Lett. 17, 034045 (2022).

    Article 

    Google Scholar 

  • Roebroek, C. T., Duveiller, G., Seneviratne, S. I., Davin, E. L. & Cescatti, A. Releasing global forests from human management: How much more carbon could be stored? Science 380, 749–753 (2023).

    Article 
    CAS 

    Google Scholar 

  • Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article 

    Google Scholar 

  • Naudts, K. et al. Forest management: Europe’s forest management did not mitigate climate warming. Science 351, 597–599 (2016).

    Article 
    CAS 

    Google Scholar 

  • Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).

    Article 
    CAS 

    Google Scholar 

  • Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Article 
    CAS 

    Google Scholar 

  • Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

    Article 

    Google Scholar 

  • O’Halloran, T. L. et al. Radiative forcing of natural forest disturbances. Glob. Change Biol. 18, 555–565 (2012).

    Article 

    Google Scholar 

  • Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).

    Article 

    Google Scholar 

  • Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).

    Article 

    Google Scholar 

  • Bright, R. M. et al. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway. Glob. Change Biol. 20, 607–621 (2014).

    Article 

    Google Scholar 

  • Bright, R. M., Zhao, K., Jackson, R. B. & Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 21, 3246–3266 (2015).

    Article 

    Google Scholar 

  • Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Article 
    CAS 

    Google Scholar 

  • Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale Deforestation: radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).

    Article 

    Google Scholar 

  • Ban-Weiss, G. A., Bala, G., Cao, L., Pongratz, J. & Caldeira, K. Climate forcing and response to idealized changes in surface latent and sensible heat. Environ. Res. Lett. 6, 034032 (2011).

    Article 

    Google Scholar 

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 
    CAS 

    Google Scholar 

  • Alibakhshi, S., Naimi, B. Hovi, A., Crowther, T. W. & Rautiainen, M. Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sens. Environ. 246, 111854 (2020).

  • Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85–99 (2002).

    Article 

    Google Scholar 

  • Bastiaanssen, W. G., Menenti, M., Feddes, R. & Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 212, 198–212 (1998).

    Article 

    Google Scholar 

  • Bright, R. M. et al. Inferring surface albedo prediction error linked to forest structure at high latitudes. J. Geophys. Res.: Atmos. 123, 4910–4925 (2018).

    Article 

    Google Scholar 

  • Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Article 

    Google Scholar 

  • González-Trujillo, J. D., Román-Cuesta, R. M., Muñiz-Castillo, A. I., Amaral, C. H. & Araújo, M. B. Multiple dimensions of extreme weather events and their impacts on biodiversity. Clim. Change 176, 155 (2023).

    Article 

    Google Scholar 

  • Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large‐scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Article 

    Google Scholar 

  • Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).

    Article 

    Google Scholar 

  • Alkama, R. & Cescatti, A. Climate change: biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603–6603 (2015).

    Article 
    CAS 

    Google Scholar 

  • Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ aqua land cover type yearly L3 global 500m SIN grid V061. NASA EOSDIS Land Process. DAAC 10, 200 (2022).

    Google Scholar 

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Potential and actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res.: Atmos. 121, 14,372–314,386 (2016).

    Article 

    Google Scholar 

  • Zeppetello, L. R. V. et al. Consistent cooling benefits of silvopasture in the tropics. Nat. Commun. 13, 708 (2022).

    Article 
    CAS 

    Google Scholar 

  • Windisch, M. G., Davin, E. L., & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Article 
    CAS 

    Google Scholar 

  • Harris, N., Goldman, E. D. & Gibbes, S. Spatial database of planted trees (SDPT) version 1.0. Technical Note, World Resources Institute (2019).

  • Crouzeilles, R. et al. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

    Article 

    Google Scholar 

  • Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large‐scale forest and landscape restoration in the tropics. Biotropica 48, 709–715 (2016).

    Article 

    Google Scholar 

  • Kuusinen, N., Tomppo, E. & Berninger, F. Linear unmixing of MODIS albedo composites to infer subpixel land cover type albedos. Int. J. Appl. Earth Observation Geoinf. 23, 324–333 (2013).

    Article 

    Google Scholar 

  • Hovi, A. et al. Seasonal dynamics of albedo across European boreal forests: Analysis of MODIS albedo and structural metrics from airborne LiDAR. Remote Sens. Environ. 224, 365–381 (2019).

    Article 

    Google Scholar 

  • Rayden, T., Jones, K. R., Austin, K. & Radachowsky, J. Improving climate and biodiversity outcomes through restoration of forest integrity. Conserv. Biol. 37, e14163 (2023).

    Article 

    Google Scholar 

  • Abu-Hamdeh, N. H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 86, 97–102 (2003).

    Article 

    Google Scholar 

  • Dai, Y. et al. Evaluation of soil thermal conductivity schemes for use in land surface modeling. J. Adv. Model. Earth Syst. 11, 3454–3473 (2019).

    Article 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2020). Global Forest Resources Assessment 2020: Main report. Date of access: 20 May 2024

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci. 116, G03025 (2011).

  • Li, Y. et al. Green spaces provide substantial but unequal urban cooling globally. Nat. Commun. 15, 7108 (2024).

    Article 
    CAS 

    Google Scholar 

  • Araújo, M. B. & Alagador, D. Expanding European protected areas through rewilding. Curr. Biol. 34, 3931–3940.e5 (2024).

  • Paterson, J. S., Araújo, M. B., Berry, P. M., Piper, J. M. & Rounsevell, M. D. A. Mitigation, adaptation, and the threat to biodiversity. Conserv. Biol. 22, 1352–1355 (2008).

    Article 

    Google Scholar 

  • Bustamante, M. M. et al. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Change 24, 1249–1270 (2019).

    Article 

    Google Scholar 

  • Richter, D. D., Markewitz, D., Trumbore, S. E. & Wells, C. G. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400, 56–58 (1999).

    Article 
    CAS 

    Google Scholar 

  • Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).

    Article 
    CAS 

    Google Scholar 

  • Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).

    Article 

    Google Scholar 

  • Spracklen, D. V., Arnold, S. R. & Taylor, C. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Article 
    CAS 

    Google Scholar 

  • Erbaugh, J. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC, 10 (2015).

  • Schaaf, C., Wang, Z., Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+ Aqua BRDF/albedo model parameters daily L3 global–500 m V006. EOSDIS L. Process. DAAC, NASA, Washington, DC, USA, Tech. Rep. (2015).

  • Running, S., Mu, Q. & Zhao, M. Mod16A2 modis/terra net evapotranspiration 8-day l4 global 500m sin grid v006. NASA EOSDIS Land Processes DAAC, 6 (2017).

  • Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).

    Article 

    Google Scholar 

  • Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

  • Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high‐CO2 world—Higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. 43, 6546–6553 (2016).

    Article 
    CAS 

    Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • link

    Copyright © All rights reserved. | Newsphere by AF themes.