Natural forest regeneration is projected to reduce local temperatures

Nolan, C. J., Field, C. B. & Mach, K. J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2, 436–446 (2021).
Google Scholar
Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl Acad. Sci. USA 117, 24649–24651 (2020).
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Google Scholar
Lefebvre, D. et al. Assessing the carbon capture potential of a reforestation project. Sci. Rep. 11, 19907 (2021).
Google Scholar
Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).
Google Scholar
Tuinenburg, O. A., Bosmans, J. H. & Staal, A. The global potential of forest restoration for drought mitigation. Environ. Res. Lett. 17, 034045 (2022).
Google Scholar
Roebroek, C. T., Duveiller, G., Seneviratne, S. I., Davin, E. L. & Cescatti, A. Releasing global forests from human management: How much more carbon could be stored? Science 380, 749–753 (2023).
Google Scholar
Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).
Google Scholar
Naudts, K. et al. Forest management: Europe’s forest management did not mitigate climate warming. Science 351, 597–599 (2016).
Google Scholar
Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).
Google Scholar
Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).
Google Scholar
Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).
Google Scholar
O’Halloran, T. L. et al. Radiative forcing of natural forest disturbances. Glob. Change Biol. 18, 555–565 (2012).
Google Scholar
Bright, R. M. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296–302 (2017).
Google Scholar
Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).
Google Scholar
Bright, R. M. et al. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway. Glob. Change Biol. 20, 607–621 (2014).
Google Scholar
Bright, R. M., Zhao, K., Jackson, R. B. & Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 21, 3246–3266 (2015).
Google Scholar
Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).
Google Scholar
Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale Deforestation: radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).
Google Scholar
Ban-Weiss, G. A., Bala, G., Cao, L., Pongratz, J. & Caldeira, K. Climate forcing and response to idealized changes in surface latent and sensible heat. Environ. Res. Lett. 6, 034032 (2011).
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Alibakhshi, S., Naimi, B. Hovi, A., Crowther, T. W. & Rautiainen, M. Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sens. Environ. 246, 111854 (2020).
Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85–99 (2002).
Google Scholar
Bastiaanssen, W. G., Menenti, M., Feddes, R. & Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 212, 198–212 (1998).
Google Scholar
Bright, R. M. et al. Inferring surface albedo prediction error linked to forest structure at high latitudes. J. Geophys. Res.: Atmos. 123, 4910–4925 (2018).
Google Scholar
Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).
Google Scholar
González-Trujillo, J. D., Román-Cuesta, R. M., Muñiz-Castillo, A. I., Amaral, C. H. & Araújo, M. B. Multiple dimensions of extreme weather events and their impacts on biodiversity. Clim. Change 176, 155 (2023).
Google Scholar
Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large‐scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).
Google Scholar
Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).
Google Scholar
Alkama, R. & Cescatti, A. Climate change: biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).
Google Scholar
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603–6603 (2015).
Google Scholar
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ aqua land cover type yearly L3 global 500m SIN grid V061. NASA EOSDIS Land Process. DAAC 10, 200 (2022).
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Google Scholar
Li, Y. et al. Potential and actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res.: Atmos. 121, 14,372–314,386 (2016).
Google Scholar
Zeppetello, L. R. V. et al. Consistent cooling benefits of silvopasture in the tropics. Nat. Commun. 13, 708 (2022).
Google Scholar
Windisch, M. G., Davin, E. L., & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).
Google Scholar
Harris, N., Goldman, E. D. & Gibbes, S. Spatial database of planted trees (SDPT) version 1.0. Technical Note, World Resources Institute (2019).
Crouzeilles, R. et al. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).
Google Scholar
Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large‐scale forest and landscape restoration in the tropics. Biotropica 48, 709–715 (2016).
Google Scholar
Kuusinen, N., Tomppo, E. & Berninger, F. Linear unmixing of MODIS albedo composites to infer subpixel land cover type albedos. Int. J. Appl. Earth Observation Geoinf. 23, 324–333 (2013).
Google Scholar
Hovi, A. et al. Seasonal dynamics of albedo across European boreal forests: Analysis of MODIS albedo and structural metrics from airborne LiDAR. Remote Sens. Environ. 224, 365–381 (2019).
Google Scholar
Rayden, T., Jones, K. R., Austin, K. & Radachowsky, J. Improving climate and biodiversity outcomes through restoration of forest integrity. Conserv. Biol. 37, e14163 (2023).
Google Scholar
Abu-Hamdeh, N. H. Thermal properties of soils as affected by density and water content. Biosyst. Eng. 86, 97–102 (2003).
Google Scholar
Dai, Y. et al. Evaluation of soil thermal conductivity schemes for use in land surface modeling. J. Adv. Model. Earth Syst. 11, 3454–3473 (2019).
Google Scholar
Food and Agriculture Organization of the United Nations. (2020). Global Forest Resources Assessment 2020: Main report. Date of access: 20 May 2024
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. Biogeosci. 116, G03025 (2011).
Li, Y. et al. Green spaces provide substantial but unequal urban cooling globally. Nat. Commun. 15, 7108 (2024).
Google Scholar
Araújo, M. B. & Alagador, D. Expanding European protected areas through rewilding. Curr. Biol. 34, 3931–3940.e5 (2024).
Paterson, J. S., Araújo, M. B., Berry, P. M., Piper, J. M. & Rounsevell, M. D. A. Mitigation, adaptation, and the threat to biodiversity. Conserv. Biol. 22, 1352–1355 (2008).
Google Scholar
Bustamante, M. M. et al. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Change 24, 1249–1270 (2019).
Google Scholar
Richter, D. D., Markewitz, D., Trumbore, S. E. & Wells, C. G. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400, 56–58 (1999).
Google Scholar
Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).
Google Scholar
Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).
Google Scholar
Spracklen, D. V., Arnold, S. R. & Taylor, C. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
Google Scholar
Erbaugh, J. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).
Google Scholar
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC, 10 (2015).
Schaaf, C., Wang, Z., Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+ Aqua BRDF/albedo model parameters daily L3 global–500 m V006. EOSDIS L. Process. DAAC, NASA, Washington, DC, USA, Tech. Rep. (2015).
Running, S., Mu, Q. & Zhao, M. Mod16A2 modis/terra net evapotranspiration 8-day l4 global 500m sin grid v006. NASA EOSDIS Land Processes DAAC, 6 (2017).
Perugini, L. et al. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 12, 053002 (2017).
Google Scholar
Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).
Sonntag, S., Pongratz, J., Reick, C. H. & Schmidt, H. Reforestation in a high‐CO2 world—Higher mitigation potential than expected, lower adaptation potential than hoped for. Geophys. Res. Lett. 43, 6546–6553 (2016).
Google Scholar
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).
Google Scholar
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
Google Scholar
link