Natural environmental factors at birth on risk for rheumatoid arthritis: the impact of season, temperature, latitude, and sunlight exposure | BMC Public Health

Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. Genetics of rheumatoid arthritis – a comprehensive review. Clin Rev Allergy Immunol. 2013;45(2):170–9. https://doi.org/10.1007/s12016-012-8346-7.
Google Scholar
Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002;4(Suppl 3):S265–72. https://doi.org/10.1186/ar578.
Google Scholar
GBD 2021 Rheumatoid Arthritis Collaborators. Global, regional, and National burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the global burden of disease study 2021. Lancet Rheumatol. 2023;5(10):e594–594610. https://doi.org/10.1016/S2665-9913(23)00211-4.
Google Scholar
Fønnebo V. Month of birth and prevalence of musculoskeletal diseases later in life. Lancet. 1987;1(8535):739–40. https://doi.org/10.1016/s0140-6736(87)90371-0.
Google Scholar
Mooldijk SS, Licher S, Vinke EJ, Vernooij MW, Ikram MK, Ikram MA. Season of birth and the risk of dementia in the population-based Rotterdam study. Eur J Epidemiol. 2021;36(5):497–506. https://doi.org/10.1007/s10654-021-00755-3.
Google Scholar
Harvey JN, Hibbs R, Maguire MJ, O’Connell H, Gregory JW. The changing incidence of childhood-onset type 1 diabetes in Wales: effect of gender and season at diagnosis and birth. Diabetes Res Clin Pract. 2021;175:108739. https://doi.org/10.1016/j.diabres.2021.108739.
Google Scholar
Rodríguez Cruz PM, Matthews L, Boggild M, et al. Time- and Region-Specific season of birth effects in multiple sclerosis in the united Kingdom. JAMA Neurol. 2016;73(8):954–60. https://doi.org/10.1001/jamaneurol.2016.1463.
Google Scholar
Buchanan WW, Gregoire LG, Buchanan HM. Month of birth and rheumatoid arthritis. Lancet. 1987;2(8557):517. https://doi.org/10.1016/s0140-6736(87)91835-6.
Google Scholar
Langley-Evans SC, McMullen S. Developmental origins of adult disease. Med Princ Pract. 2010;19(2):87–98. https://doi.org/10.1159/000273066.
Google Scholar
Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Chest. 2011;139(3):640–7. https://doi.org/10.1378/chest.10-1800.
Google Scholar
Kull M Jr, Kallikorm R, Tamm A, Lember M. Seasonal variance of 25-(OH) vitamin D in the general population of Estonia, a Northern European country. BMC Public Health. 2009;9:22. https://doi.org/10.1186/1471-2458-9-22.
Google Scholar
Qian Z, Lin HM, Stewart WF, et al. Seasonal pattern of the acute mortality effects of air pollution. J Air Waste Manag Assoc. 2010;60(4):481–8. https://doi.org/10.3155/1047-3289.60.4.481.
Google Scholar
Finckh A, Gilbert B, Hodkinson B, et al. Global epidemiology of rheumatoid arthritis. Nat Rev Rheumatol. 2022;18(10):591–602. https://doi.org/10.1038/s41584-022-00827-y.
Google Scholar
Kostoglou-Athanassiou I, Athanassiou P, Lyraki A, Raftakis I, Antoniadis C. Vitamin D and rheumatoid arthritis. Ther Adv Endocrinol Metab. 2012;3(6):181–7. https://doi.org/10.1177/2042018812471070.
Google Scholar
Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. https://doi.org/10.1038/nm.3914.
Google Scholar
Hart JE, Laden F, Puett RC, Costenbader KH, Karlson EW. Exposure to traffic pollution and increased risk of rheumatoid arthritis. Environ Health Perspect. 2009;117(7):1065–9. https://doi.org/10.1289/ehp.0800503.
Google Scholar
Chen Z, Chen J, Collins R, et al. China kadoorie biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int J Epidemiol. 2011;40(6):1652–66. https://doi.org/10.1093/ije/dyr120.
Google Scholar
Chen Z, Lee L, Chen J, et al. Cohort profile: the kadoorie study of chronic disease in China (KSCDC). Int J Epidemiol. 2005;34(6):1243–9. https://doi.org/10.1093/ije/dyi174.
Google Scholar
Arnett FC, Edworthy SM, Bloch DA, et al. The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24. https://doi.org/10.1002/art.1780310302.
Google Scholar
Li R, Sun J, Ren LM, et al. Epidemiology of eight common rheumatic diseases in China: a large-scale cross-sectional survey in Beijing. Rheumatology (Oxford). 2012;51(4):721–9. https://doi.org/10.1093/rheumatology/ker370.
Google Scholar
Sparks JA, Chen CY, Hiraki LT, Malspeis S, Costenbader KH, Karlson EW. Contributions of Familial rheumatoid arthritis or lupus and environmental factors to risk of rheumatoid arthritis in women: a prospective cohort study. Arthritis Care Res (Hoboken). 2014;66(10):1438–46. https://doi.org/10.1002/acr.22366.
Google Scholar
Karlson EW, Ding B, Keenan BT, et al. Association of environmental and genetic factors and gene-environment interactions with risk of developing rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65(7):1147–56. https://doi.org/10.1002/acr.22005.
Google Scholar
Zeng X, Yuan X, Liao H, et al. The miR-665/SOST axis regulates the phenotypes of bone marrow mesenchymal stem cells and osteoporotic symptoms in female mice. Am J Pathol. 2024;194(11):2059–75. https://doi.org/10.1016/j.ajpath.2024.07.022.
Google Scholar
Zhao Q, Feng J, Liu F, et al. Rhizoma Drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells via targeting ERα signaling. Acta Pharm Sin B. 2024;14(5):2210–27. https://doi.org/10.1016/j.apsb.2024.02.005.
Google Scholar
Grassly NC, Fraser C. Seasonal infectious disease epidemiology. Proc Biol Sci. 2006;273(1600):2541–50. https://doi.org/10.1098/rspb.2006.3604.
Google Scholar
Disanto G, Chaplin G, Morahan JM, et al. Month of birth, vitamin D and risk of immune-mediated disease: a case control study. BMC Med. 2012;10:69. https://doi.org/10.1186/1741-7015-10-69.
Google Scholar
Jacoby RK, Jayson MI, Cosh JA. Onset, early stages, and prognosis of rheumatoid arthritis: a clinical study of 100 patients with 11-year follow-up. Br Med J. 1973;2(5858):96–100. https://doi.org/10.1136/bmj.2.5858.96.
Google Scholar
Triki WRE, Ferjani HBAR, Ben Nessib DMK et al. Impact of the Month of Birth on the Development of Juvenile Idiopathic Arthritis among Tunisian Children. RHEUMATOLOGY. 2022;61(Supplement_2):keac496.006.
Berkun Y, Lewy H, Padeh S, Laron Z. Seasonality of birth of patients with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2015;33(1):122–6.
Google Scholar
Lawrence JS, Behrend T, Bennett PH, et al. Geographical studies on rheumatoid arthritis. Ann Rheum Dis. 1966;25(5):425–32. https://doi.org/10.1136/ard.25.5.425.
Google Scholar
Sellar C, Goldacre MJ. Season of birth, year of birth, and arthritic disease in later life. Lancet. 1988;1(8600):1461. https://doi.org/10.1016/s0140-6736(88)92271-4.
Google Scholar
Lee J, Kim JH, Chung MK, et al. Effects of birth months on rheumatic diseases in South Korea: a nationwide case-control study. Clin Exp Rheumatol. 2020;38(3):411–9.
Google Scholar
Willer CJ, Dyment DA, Sadovnick AD, Rothwell PM, Murray TJ, Ebers GC. Timing of birth and risk of multiple sclerosis: population based study. BMJ. 2005;330(7483):120. https://doi.org/10.1136/bmj.38301.686030.63.
Google Scholar
Zhao D, Cheng J, Bao P, et al. Effect of ambient temperature on outpatient admission for osteoarthritis and rheumatoid arthritis in a subtropical Chinese City. BMC Public Health. 2022;22(1):172. https://doi.org/10.1186/s12889-021-11994-0.
Google Scholar
Liu J, Peng F, Cheng H, et al. Chronic cold environment regulates rheumatoid arthritis through modulation of gut microbiota-derived bile acids. Sci Total Environ. 2023;903:166837. https://doi.org/10.1016/j.scitotenv.2023.166837.
Google Scholar
Peres D, Prati C, Mourot L, Demartino AM, Sagawa Y Jr, Tordi N. Effects of an exercise program and Cold-Water immersion recovery in patients with rheumatoid arthritis (RA): feasibility study. Int J Environ Res Public Health. 2023;20(12). https://doi.org/10.3390/ijerph20126128.
Zeng P, Bengtsson C, Klareskog L, Alfredsson L. Working in cold environment and risk of developing rheumatoid arthritis: results from the Swedish EIRA case-control study. RMD Open. 2017;3(2):e000488. https://doi.org/10.1136/rmdopen-2017-000488.
Google Scholar
Stražar M, Temba GS, Vlamakis H, et al. Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nat Commun. 2021;12(1):4845. https://doi.org/10.1038/s41467-021-25213-2.
Google Scholar
Costenbader KH, Chang SC, Laden F, Puett R, Karlson EW. Geographic variation in rheumatoid arthritis incidence among women in the united States. Arch Intern Med. 2008;168(15):1664–70. https://doi.org/10.1001/archinte.168.15.1664.
Google Scholar
Vieira VM, Hart JE, Webster TF, et al. Association between residences in U.S. Northern latitudes and rheumatoid arthritis: A Spatial analysis of the nurses’ health study. Environ Health Perspect. 2010;118(7):957–61. https://doi.org/10.1289/ehp.0901861.
Google Scholar
GEO-RA Group. Latitude gradient influences the age of onset of rheumatoid arthritis: a worldwide survey. Clin Rheumatol. 2017;36(3):485–97. https://doi.org/10.1007/s10067-016-3481-9
Google Scholar
Jordan SR, Stevanovic VR, Herbison P, Dockerty J, Highton J. Methotrexate pneumonitis in rheumatoid arthritis: increased prevalence with increasing latitude: an epidemiological study of trends in new Zealand. J Clin Rheumatol. 2011;17(7):356–7. https://doi.org/10.1097/RHU.0b013e3182314e34.
Google Scholar
Bergstra SA, Sepriano A, Chopra A, et al. Country-level socioeconomic status relates geographical latitude to the onset of RA: a worldwide cross-sectional analysis in the METEOR registry. Ann Rheum Dis. 2023;82(8):1018-24. https://doi.org/10.1136/ard-2023-224080.
Arkema EV, Hart JE, Bertrand KA, et al. Exposure to ultraviolet-B and risk of developing rheumatoid arthritis among women in the nurses’ health study. Ann Rheum Dis. 2013;72(4):506–11. https://doi.org/10.1136/annrheumdis-2012-202302.
Google Scholar
Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81. https://doi.org/10.1056/NEJMra070553.
Google Scholar
Harvey L, Burne TH, McGrath JJ, Eyles DW. Developmental vitamin D3 deficiency induces alterations in immune organ morphology and function in adult offspring. J Steroid Biochem Mol Biol. 2010;121(1–2):239–42. https://doi.org/10.1016/j.jsbmb.2010.03.050.
Google Scholar
Yu S, Cantorna MT. Epigenetic reduction in invariant NKT cells following in utero vitamin D deficiency in mice. J Immunol. 2011;186(3):1384–90. https://doi.org/10.4049/jimmunol.1002545.
Google Scholar
Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on Naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167(9):4974–80. https://doi.org/10.4049/jimmunol.167.9.4974.
Google Scholar
Zak-Prelich M, Borkowski JL, Alexander F, Norval M. The role of solar ultraviolet irradiation in Zoster. Epidemiol Infect. 2002;129(3):593–7. https://doi.org/10.1017/s0950268802007793.
Google Scholar
Norval M. The effect of ultraviolet radiation on human viral infections. Photochem Photobiol. 2006;82(6):1495–504. https://doi.org/10.1562/2006-07-28-IR-987.
Google Scholar
Walters RG, Millwood IY, Lin K, et al. Genotyping and population characteristics of the China kadoorie biobank. Cell Genom. 2023;3(8):100361. https://doi.org/10.1016/j.xgen.2023.100361.
Google Scholar
link